

Smart Education is enough to change human academic-struggle positively

VISIT OUR WEBSITE FOR

1. Tutorial videos
2. Solutions to past Question paper
3. Text Book
4. Latest handouts
5. Updates on Scholarships and programs
6. University news and Campus Gossip
7. Guidance and counseling
8. Special Personal Tutorials

URL : www.Smartbukites.com

MTH1302 $1^{\text {st }}$ Summary

Two Dimensional Coordinate Geometry

Coordinate geometry is a method of analyzing geometric shapes. In this tutorial our discussion will be limited to straight lines and circles.

Straight Line

What is a straight line?
A straight line is a line separating two point with zero curvature.
There are three types of point's position reference which are:

- Fixed Point (X, Y)
- Generic Points $\left(X_{1}, Y_{1}\right)\left(X_{2}, Y_{2}\right)$
- General Points (X, Y), this point can be located anywhere or always varying

Analysis of a Straight Line
We analyze a straight line by calculating the following parameters depending on the type of question

a. Distance between two Points

Pythagoras theorem can be used in calculating the distance between two points A and B after forming a right angle triangle with the Straight Line.

$$
\begin{gathered}
(A B)^{2}=(A L)^{2}+(B L)^{2} \\
(A B)^{2}=\left(X_{2}-X_{1}\right)^{2}+\left(Y_{2}-Y_{1}\right)^{2}
\end{gathered}
$$

Where $A L=X_{2}-X_{1}$ and $B L=Y_{2}-Y_{1}$

$$
(A B)=\sqrt{\left(X_{2}-X_{1}\right)^{2}+\left(Y_{2}-Y_{1}\right)^{2}}
$$

b. Mid-point : The midpoint is the center of a straight line

The center of X -Coordinate of M is given as

$$
\frac{X_{2}-X_{1}}{2}
$$

The center of Y-Coordinate of M is given as

$$
\frac{Y_{2}-Y_{1}}{2}
$$

c. Gradient: This is the inclination of the line towards the axis of the horizontal plane (Xaxis).

The gradient of line $\overline{A B}$

$$
\overline{A B}=\frac{Y_{2}-Y_{1}}{X_{2}-X_{1}}=m
$$

NB

- Slope of two parallel line m_{1} and m_{2} are the same $m_{1}=m_{2}$
- Slope of two perpendicular lines m_{1} and m_{2} is equal to -1

$$
m_{1} m_{2}=-1, \quad m_{1}=-\frac{1}{m_{2}}, \quad m_{2}=-\frac{1}{m_{1}}
$$

d. Equation of a straight Line

The general equation is given as:

$$
y=m x+c
$$

Where:

$$
\begin{aligned}
& \boldsymbol{m} \text { is the slope } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \boldsymbol{c} \text { is the point on intercept on } y-\text { axis }
\end{aligned}
$$

NB: $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$ can be used to find the equation of a straight line

Examples

1. Find the equation of a straight line through the point $(-1,3)$ with slope of 2

Solution

$$
\begin{aligned}
& (x, y) \quad(-1,3) \quad \mathrm{m}=2 \\
& \left(y-y_{1}\right)=m\left(x-x_{1}\right)+c \\
& (y-3)=2(x-(-1))+0 \\
& (y-3)=2(x+1) \\
& y-3=2 x+2 \\
& y=2 x+2+3 \\
& y=2 x+5
\end{aligned}
$$

2. Find the equation of a line through the point $(1,2)$ and $(3,1)$. What is its slope? What is the intercept

Solution

$$
\begin{aligned}
& m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{2-1}{1-3}=\frac{1}{-2} \quad m=-\frac{1}{2} \\
& \left(y-y_{1}\right)=m\left(x-x_{1}\right) \\
& (y-2)=\frac{-1}{2}(x-1) \\
& y-2=\frac{-1}{2} x+\frac{1}{2} \\
& y=\frac{-1}{2} x+\frac{1}{2}+2 \\
& y=\frac{-1}{2} x+\frac{5}{2} \\
& y=m x+c \quad \text { slope }=-\frac{1}{2} \quad \text { and intercept }=\frac{5}{2}
\end{aligned}
$$

3. What is the equation of the line that passes through the point $(1,1)$ and perpendicular to the line $y=-2 x+2$, where did the two lines intercept?

Solution

a. slope parallel lines $m_{1}=m_{2}$, perpendicular lines $m_{1} m_{2}=-1$

$$
m_{1}=-\frac{1}{m_{2}}
$$

$$
\begin{aligned}
y & =-2 x+2 \\
m_{1} & =-2 \quad m_{2}=\frac{1}{m_{1}}=-\frac{1}{-2}=\frac{1}{2}
\end{aligned}
$$

therefore equation of $(1,1)$

$$
\left(y-y_{1}\right)=m\left(x-x_{1}\right)
$$

$(y-1)=\frac{1}{2}(x-1)$
$y-1=\frac{1}{2} x-\frac{1}{2}$
$y=\frac{1}{2} x-\frac{1}{2}+1$
$y=\frac{1}{2} x+\frac{1}{2} \quad m=1 \quad c_{1}=2$

$$
m=\frac{1}{2} \quad c_{2}=\frac{1}{2}
$$

b. Point of intercept

$$
\begin{aligned}
& y=-2 x+2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \operatorname{eqn}(1) \\
& \left.y=\frac{1}{2} x+\frac{1}{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text {............................ } 2\right)
\end{aligned}
$$

$$
y=-2 x+2
$$

$$
-\quad y=\frac{1}{2} x+\frac{1}{2}
$$

$$
0=-\frac{5}{2} x+\frac{3}{2}
$$

$-\frac{5}{2} x+\frac{3}{2} \quad \frac{5}{2} x=\frac{3}{2}$
$x=\frac{3}{2} \div \frac{5}{2}=\frac{3}{2} \times \frac{2}{5}=\frac{3}{5} \quad x=\frac{3}{5}$

$$
\begin{aligned}
& \text { Subtituting } x \text { in eqn(1) } \\
& \begin{array}{l}
y=-2 x+2 \\
y=-2\left(+2\left(\frac{3}{5}\right)+2\right) \\
y=\frac{4}{5}
\end{array}
\end{aligned}
$$

The point of intercept of the two lines is $\left(\frac{3}{5}, \frac{4}{5}\right)$

Exercise

1. Find the equation of the line connecting
a. $\mathrm{A}(2,6)$ and $\mathrm{B}(5,8)$
ans $3 y=2 x+4$
b. $\mathrm{A}(-1,3)$ and $\mathrm{B}(11,12)$
2. The equation of a line $y=-2 x+3$ which is perpendicular to a line passing through $(5,6)$
a. Find the equation of the line $(5,6)$
b. Where do the two lines intersect
3. The point Q and P are coordinate $(-1,6)$ and $(9,0)$ respectively. The line L is perpendicular to PQ and passes through the mid-point of PQ . Find the equation of the line L
4. The equation of a line $\left(l_{1}\right)$ is $2 y-3 x-k=0$ where k is a constant, given that the point $\mathrm{A}(1,4)$ lies on l_{1} find
a. The value of K ?
b. The gradient of l_{1}

Circle

What is a circle?
A circle is a simple shape of Euclidean Geometry consisting of those points in a plane which have an equal distance from the center.

What is a circle diameter?
Diameter is a straight line passing from side to side through the center of a circle. Unit is measured in meters (m)

What is circle radius?
This is simply half of the diameter of a circle

$$
r=\frac{d}{2} \quad \text { unit in meters }(m)
$$

Analysis of a Circle

The equation of a circle can be analyze depending on the question, below are some analyses of a circle.
a. The general equation of a circle

This can also be analyze using Pythagorean Theorem

b. The equation of a circle whose diameter is joining two points A and B respectively can be $\left(X_{1}, Y_{1}\right)$ and (X_{2}, Y_{2}) as shown below

c. The equation of a circle, through three different points:

Assuming three points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ then we have:

$$
\begin{align*}
& \left(x_{1}\right)^{2}+\left(y_{1}\right)^{2}+\left(2 g x_{1}\right)+\left(2 f y_{1}\right)+c=0 \ldots \ldots \ldots \ldots \ldots \ldots . \tag{i}\\
& \left(x_{2}\right)^{2}+\left(y_{2}\right)^{2}+\left(2 g x_{2}\right)+\left(2 f y_{2}\right)+c=0 \ldots \ldots \ldots \ldots \ldots \ldots . \\
& \left(x_{3}\right)^{2}+\left(y_{3}\right)^{2}+\left(2 g x_{3}\right)+\left(2 f y_{3}\right)+c=0 \ldots \ldots \ldots \ldots \ldots \ldots .
\end{align*}
$$

The constants g, f and c are found by solving the equations.
d. The equation of the length of the tangent from a given external points to a circle

Using Pythagoras Theorem $(T Q)^{2}=(T C)^{2}+(C Q)^{2}$
Where: $\quad \mathrm{T}$ is the given point at (x, y)
TQ is the tangent to the circle
C is the center of the circle

$$
\text { Therefore: }(T Q)^{2}=(x)^{2}+(y)^{2}+2 g x+2 f y+c
$$

Examples

Q1. Find the equation of a circle whose center is at point $(-2,3)$ and diameter has a length of 20

Solution

Equation of circle $\quad(x-a)^{2}+(y-b)^{2}=r^{2}$

$$
d=20, r=\frac{4}{5}=10
$$

$a=-2, \quad b=3$

$$
\begin{aligned}
& (x-(-2))^{2}+(y-3)^{2}=10^{2} \\
& (x+2)^{2}+(y-3)^{2}=100
\end{aligned}
$$

Q2. Find the center and the radius of the circle whose equation is given by $x^{2}+4 x+y^{2}-8 y=5$

Solution

$$
x^{2}+4 x+y^{2}-8 y=5
$$

Adding and subtracting half $\left(\frac{1}{2}\right)$ of the coeeficient of x^{2} and y^{2}
Coefficient of $x=4 \quad\left(\frac{4}{2}\right)^{2}=2^{2}=4$
Coefficient of $y=8\left(\frac{8}{2}\right)^{2}=4^{2}=16$

$$
x^{2}+4 x+y^{2}-8 y=5
$$

Adding and subtracting 4 and 16 to the equation

$$
\begin{aligned}
& x^{2}+4 x+4-4+y^{2}-8 y+16-16=5 \\
& x^{2}+2 x+2 x+4-4+y^{2}-4 y-4 y+16-16=5 \\
& x(x+2)+2(x+2)-4+y(y-4)-4(y-4)-16=5 \\
& (x+2)(x+2)-4+(y-4)(y-4)-16=5 \\
& (x+2)^{2}+(y-4)^{2}-20=5 \\
& (x+2)^{2}+(y-4)^{2}=25 \quad c(-2,4) \\
& (x-h)^{2}+(y-k)^{2}=r^{2} \quad r=5 \\
& -a=2 \quad-b=-4 \quad r^{2}=25 \\
& a=-2 \quad b=4 \quad r=\sqrt{25}=5
\end{aligned}
$$

Q3. Find an equation of the circle whose center is at the point $(-4,6)$ and passes through the point (1, 2)

Solution

$$
c(-4,6) \quad p=(1,2)
$$

Finding the radius from
$(x-a)^{2}+(y-b)^{2}=r^{2}$
$c(a, b) \quad p=(x, y) \quad x=1 \quad y=2$

$$
a=-4 \quad b=6
$$

$r^{2}=(1-(-4))^{2}+(2-6)^{2}$
$r^{2}=(1+4)^{2}+(-4)^{2}$
$r^{2}=25+16$
$r^{2}=41$
Equation of the line is
$(x+4)^{2}+(y-6)^{2}=41$

Q4. Find an equation of the circle whose diameter d has endpoint at $(-5,2)$ and $(3,6)$

Solution

The formula f a distance between two lines

$$
\begin{gathered}
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(3-(-5))^{2}+(6-2)^{2}} \\
A B=\sqrt{8^{2}+4^{2}}=\sqrt{80} \\
\text { diameter }=\sqrt{80} \\
\text { radius }=\frac{\sqrt{80}}{2}=\frac{\sqrt{16 \times 5}}{2}=\frac{4 \sqrt{5}}{2}=2 \sqrt{5}
\end{gathered}
$$

To find $c(x, y)$ we are going to apply the Midpoint rule

$$
\begin{gathered}
\text { Midpoint rule } \rightarrow \quad x=\frac{\left(x_{1}+x_{2}\right)}{2} \quad y=\frac{\left(y_{1}+y_{2}\right)}{2} \\
\text { Midpoint rule } \rightarrow \quad x=\frac{(-5+3)}{2}=-\frac{2}{2}=-1 \quad y=\frac{(2+6)}{2}=\frac{8}{2}=4
\end{gathered}
$$

Equation of the Line is

$$
\begin{gathered}
(x-a)^{2}+(x-b)^{2}=r^{2} \\
(x-(-1))^{2}+(x-4)^{2}=(2 \sqrt{5})^{2} \\
(x+1)^{2}+(x-4)^{2}=4 \times 5 \\
(x+1)^{2}+(x-4)^{2}=20
\end{gathered}
$$

Q5. Find the X and Y intercepts of the graph of the circle given the equation $x^{2}+3 x+y^{2}-4 y=18$
Solution

$$
\begin{array}{cl}
x^{2}+3 x+y^{2}-4 y=18 \\
\text { Setting } & y=0 \\
x^{2}+3 x=18 & x^{2}+3 x-18=0
\end{array}
$$

$$
\begin{gathered}
\begin{array}{c}
x^{2}-3 x+6 x-18=0 \quad x(x-3)+6(x-3)=0 \\
(x+6)(x-3)=0 \\
x=-6 \text { and } 3
\end{array} \\
\text { Setting } \quad x=0 \\
y^{2}-4 y=18 \quad y^{2}-4 y-18=0 \\
\text { using all mighty formula } \frac{(-b) \pm \sqrt{b^{2}-4 a c}}{2 a} \\
a=1 \quad b=-4 \quad c=-18 \\
\frac{-(-4) \pm \sqrt{(-4)^{2}-4 \times 1 \times-18}}{2 \times 1}=\frac{4 \pm \sqrt{16+72}}{2}=\frac{4 \pm \sqrt{88}}{2}=\frac{4 \pm \sqrt{4 \times 22}}{2} \\
=\frac{4 \pm 2 \sqrt{22}}{2}=\frac{4+2 \sqrt{22}}{2} \quad \text { and }=\frac{4-2 \sqrt{22}}{2} \\
y=2+\sqrt{22} \text { and } \quad 2-\sqrt{22}
\end{gathered}
$$

The intercept at $\mathrm{y}(0,2-\sqrt{22})$ and $(0,2+\sqrt{22})$ intercept at $\mathrm{x}(-6,0)$ and $(0,3)$

Exercise

1. Find the point of interception of the circle with the equation $(x-2)^{2}+(y-6)^{2}=40$ and the line with equation $y=3 x$

$$
\text { Ans }(0,0)(4,12)
$$

2. Find the equation of the circle whose center is at the point $(2,-5)$ and is tangent to the X -axis

$$
\text { Ans }(x-2)^{2}+(y+5)^{2}=25
$$

3. Find the equation of a circle that is tangent to both x and y axes, with a radius of 4 whose center is located in the second quadrant

$$
\text { Ans }(x+4)^{2}+(y-4)^{2}=16
$$

Follow SmartBukites on

Twitter: @Smartbukites
Facebook: SmartBukites

