

Smart Education is enough to change human academic-struggle positively

VISIT OUR WEBSITE FOR

1. Tutorial videos
2. Solutions to past Question paper
3. Text Book
4. Latest handouts
5. Updates on Scholarships and programs
6. University news and Campus Gossip
7. Guidance and counseling
8. Special Personal Tutorials

URL : www.Smartbukites.com

PHY1230 $1^{\text {st }}$ Summary

Elasticity

Elasticity: is the ability of a substance to regain its original shape and size after being distorted (stretched, bent, twisted or compressed) by an external force.

Elastic material: is one that regains its original shape and size after the distortion force has been removed.

Hooke's law

Hooke's Law state that, provided that the elastic limit of elastic material has not being exceeded, then force is directly proportional to the extension. When a sample is stretched this means that the extension of the sample increases linearly with the amount of force applied. Materials that obey Hooke's law are called Hookean materials.

Hooke's law can be written as; F α e

$$
F=K e
$$

Where : $\quad F=$ force

$$
\begin{aligned}
e & =\text { The extension } \\
K & =\text { Strifness constant of the sample }
\end{aligned}
$$

The limit of proportionality where there is no longer a linear relationship between Force and extension after more Force is applied the elastic limit will be reached. This means that the sample will no longer return to its original shape.

Solved problems

1. A helical spring (helix shape like spring) is stretched 2 cm by a load of 6 N . calculate
a) The force constant
b) The energy in the stretched spring.

Solution

a) $F=K e$
$\mathrm{e}=2 \mathrm{~cm}=0.02 \mathrm{~m}, \mathrm{~F}=6 \mathrm{~N}$.

$$
K=\frac{F}{e}=\frac{6}{0.02}=300 \mathrm{~N} / \mathrm{m}
$$

b) $E=1 / 2 K e^{2}=1 / 2 \times 300 \times(0.02)^{2}=0.06 J$
2. A force of 2 N stretches an elastic material by 30 mm . what additional force will stretch the material 35 mm ? Assuming Hooke's law is obeyed.

Solution

$F=K e, \quad \mathrm{~F}=2 \mathrm{~N}, \quad \mathrm{e}=30 \mathrm{~mm}=0.03 \mathrm{~m}$ (convert from mm to m)
$2=K \times 0.03$
$K=\frac{2}{0.03}=66.6 \mathrm{~N} / \mathrm{m}$
Let the force stretching the material 35 mm be F. since the elastic limit has not been exceeded the K is constant throughout that region. Therefore $\mathrm{K}=66.6 \mathrm{~N} / \mathrm{m}$ New extension $\mathrm{e}=0.035 \mathrm{~m}$
$F=K \times 0.035=66.6 \times 0.035=2.33 N$

Mechanical properties of materials

1. Strength: this is how great an applied force on a material can withstand before breaking.
2. Stiffness: is the opposition (resistance) a material set up to being distorted by having its shape or size or both changed. A stiff material is not flexible.
3. Ductility/Workability: is the ability of a material to be hammered, pressed, bend, rolled, cut or stretched into useful shapes.
4. Toughness: is a material that does not crack easily. (it is not brittle).
5. Malleability: is the ability of a material to be hammered or squeezed into their sheets. E.g Ag, $\mathrm{Au}, \mathrm{Sn}, \mathrm{Cu}$ and Al .

Tensile stress: this is the force acting per unit cross-sectional area.
Tensile strain: this is the extension produced per unit length when a material undergoes stress.

$$
\begin{aligned}
& \text { Tensile stress }(\delta)=\frac{F}{A} \\
& \text { Tensile } \operatorname{strain}(\varepsilon)=\frac{e}{L}
\end{aligned}
$$

For a material to obey Hooke's law, tensile stress is directly proportional to tensile strain:

Tensile stress α tensile strain.

Therefore tensile stress $=\mathrm{K}$ (tensile strain).

Figure 1; A graph of stress against strain.
The constant of proportionality K is called ELASTIC MODULUS of a material for the type of strain or deformation under consideration.

The moduli can be classified into three, one for each kind of strain.

1. Young modulus (E)
2. Modulus of rigidity or shear modulus (G)
3. Bulk modulus (B)

Young Modulus (E)

Young modulus (E) is the measure of a solid stiffness or resistance to elastic deformation under load. It relates stress (Force per unit area) to strain, thus a low young modulus value means a solid elastic or shift.

The equation for Yong's Modulus

$$
E=\frac{\delta}{\varepsilon}=\frac{\left(\frac{F}{A}\right)}{\frac{\Delta L}{L_{o}}}=\frac{F L_{o}}{A L}
$$

Where E is the young modulus usually expressed in Pascal in $\left(N / m^{2}\right)$

$$
\delta=\text { the uniaxial Stress }
$$

$$
\varepsilon=\text { the strain }
$$

$$
F=\text { the Force of compression and extension }
$$

$$
A=\text { Cross section Area }
$$

$$
\Delta L(e)=\text { Change in lenght }
$$

$$
L_{o}(l)=\text { the original Length }
$$

Solved problems

1. A metal bar of length 1.0 m and uniform cross-sectional area $10^{-5} \mathrm{~m}^{2}$ extends by 1.5 mm when a force of 200 N is applied. If the elastic limit is not exceeded, calculate
a) The tensile stress
b) The tensile strain
c) The young modulus for the metal.

Solution

$\mathrm{F}=200 \mathrm{~N}, \mathrm{e}=1.5 \mathrm{~mm}, \mathrm{~L}=1.0 \mathrm{~m}=1000 \mathrm{~mm}, A=10^{-5} \mathrm{~m}^{2}$.
a) Tensile stress $=\frac{F}{A}=\frac{200}{10^{-5}}=2 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$.
b) Tensile strain $=\frac{e}{L}=\frac{1.5}{1000}=0.0015$.
c) Young modulus $=\frac{\text { tensile stress }}{\text { tensile strain }}=\frac{2 \times 10^{7}}{0.0015}=1.3 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$.
2. A coil spring is used to support a 1.8 kg mass. If the spring stretches to 2 cm , what is the spring constant? What mass would be required to stretch the spring to 5 cm ?

Solution

Data given: mass $=1.80 \mathrm{~kg}, \mathrm{e}_{1}=2 \mathrm{~cm}=0.02 \mathrm{~m}, \mathrm{e}_{2}=5 \mathrm{~cm}=0.05 \mathrm{~m}$.

$$
F=m g=1.8 \times 9.8=17.64 N
$$

From Hooke's law, $F=K e$

$$
K=\frac{F}{e}=\frac{17.64}{0.02}=882 \mathrm{~N} / \mathrm{m} .
$$

If $\mathrm{e}_{2}=5 \mathrm{~cm}$,

$$
F=K e=882 \times 0.05=44.1 N
$$

Hence, F=mg

$$
m=\frac{F}{g}=\frac{44.1}{9.8}=4.50 \mathrm{~kg} .
$$

3. A wire whose cross-section is $4 \mathrm{~mm}^{2}$ is stretched by 0.1 mm by a certain weight. How far will a wire of the same material and length stretch if its cross-sectional area is $8 \mathrm{~mm}^{2}$ and the same weight is attached?

Solution

For the first wire, $\mathrm{A}_{1}=4 \mathrm{~mm}^{2}, \mathrm{e}_{1}=0.01$

$$
\begin{equation*}
E_{1}=\frac{F_{1} L_{1}}{A_{1} e_{1}} . \tag{1}
\end{equation*}
$$

For the second wire, $\mathrm{A}_{2}=8 \mathrm{~mm}^{2}, \mathrm{e}_{2}=$?

$$
\begin{equation*}
E_{2}=\frac{F_{2} L_{2}}{A_{2} e_{2}} . \tag{2}
\end{equation*}
$$

Since the second wire is of the same material and the same length with the first.
This implies that; $\mathrm{E}_{1}=\mathrm{E}_{2}$.
Hence, dividing equation 91) by (2)

$$
\begin{gathered}
\mathrm{A}_{1} \mathrm{e}_{1}=\mathrm{A}_{2} \mathrm{e}_{2} \\
e_{2}=\frac{A_{1} e_{1}}{A_{2}}=\frac{4 \times 0.1}{8}=0.05 \mathrm{~mm}
\end{gathered}
$$

Bulk modulus (B)

Bulk stress: is the increase in force per unit area
Bulk strain: is the change of volume per original volume.
The bulk modulus (B) of a substance measure the substance resistance to isolate compression, it is the ratio of the infintesimal pressure increase to resulting relative decrease in the volume. The bulk modulus can be formally defined by the above equation.

$$
K=-v \times \frac{d p}{d v} .
$$

The negative sign is introduced to make B positive since Δv being a decrease is negative

Solved examples

1. Determine the fractional change in volume as the pressure of the atmosphere 0.1 Kpa around a metal block is reduced to zero by placing the block in a vacuum. The bulk modulus for the metal is 12500 Kpa .

Solution

$$
\begin{gathered}
\Delta p=0.0-0.1=-0.1 \times 10^{3} P a \\
B=125000 \times 10^{3} P a \\
B=\frac{-\Delta p}{\frac{\Delta v}{v}} \\
\frac{\Delta v}{v}=\frac{-\Delta p}{B}=\frac{-\left(-0.1 \times 10^{3}\right)}{1.25 \times 10^{8}}=8 \times 10^{-7}
\end{gathered}
$$

2. Compute the volume change of a solid copper cube, 40 mm on each edge, when subjected to a pressure of 20 Mpa . The bulk modulus for copper is 125000 Mpa .

Solution

$\Delta p=20 M P a, B=125000 M P a, L=40 \mathrm{~mm}=40 \times 10^{-3} \mathrm{~m}$

$$
V=L^{3}=\left(40 \times 10^{-3}\right)^{3}=6.4 \times 10^{-5} \mathrm{~m}^{3} .
$$

Using the formula

$$
\Delta v=\frac{-v \Delta p}{B}=\frac{-\left(6.4 \times 10^{-5}\right)\left(20 \times 10^{6}\right)}{125000 \times 10^{6}}=-1.0 \times 10^{-8} \mathrm{~m}^{3}=10 \mathrm{~mm}^{3}
$$

Modulus of rigidity or shear modulus (G)

Shear stress: is defined as the force tangent to material surface divided by the area on which it acts.
Shear strain: is defined as the ratio of the displacement of the corner to the transverse dimension.
Provided Hooke's law is obeyed, the shear stress is directly proportional to shear strain and the elastic modulus in this case is called modulus of rigidity (G). or shear modulus or torsion modulus.

$$
\text { Modulus of rigidity } G=\frac{\text { shear stress }}{\text { shear strain }}=\frac{F_{11 / A}}{\Delta L / L}
$$

Also $\frac{\Delta L}{L}=\tan \theta=\varnothing$

Solved examples

1. The shear modulus for a metal is 50 MPa . Suppose that shear force of 200 N is applied to the upper surface of a cube of this metal that is 3.0 cm on each edge. How far will the top surface be displaced?

Solution

$$
G=50 \times 10^{6} \mathrm{~Pa}, F_{11}=200 \mathrm{~N}, L=3.010^{-2} \mathrm{~m}, \Delta L=? .
$$

$$
\Delta L=\frac{F_{11} / A}{G / L}=\frac{200 /\left(3.0 \times 10^{-2}\right)^{2}}{5 \times 10^{7} / 3.0 \times 10^{-2}}=1.332 \times 10^{-4} \mathrm{~m} .
$$

2. Two parallel and opposite forces, each 4000 N , are applied tangentially to the upper and lower faces of a cubical metal block 25 cm on a side. Find the angle of shear and the displacement of the upper surface relative to the lower surface. The shear modulus for the metal is 80 GPa .

Solution
$F_{11}=400 \mathrm{~N}, G=80 \times 10^{9} \mathrm{~Pa}, L=25 \times 10^{-2} \mathrm{~m}, A=L^{2}=\left(25 \times 10^{-2}\right)^{2}=6.25 \times 10^{-2} \mathrm{~m}^{2}$.

$$
\begin{gathered}
G=\frac{F_{11}}{A \emptyset} \\
\varnothing=\frac{F_{11}}{A G}=\frac{4000}{6.25 \times 10^{-2} \times 80 \times 10^{9}}=8 \times 10^{-7} \mathrm{rad}
\end{gathered}
$$

Shear strain $\emptyset=\frac{\Delta L}{L}$,

$$
\Delta L=L \emptyset=\left(25 \times 10^{-2}\right)\left(8.0 \times 10^{-7}\right)=2.0 \times 10^{-7} \mathrm{~m} .
$$

Summary by AUWAL SALISU

Follow SmartBukites on

Twitter: @Smartbukites
Facebook: SmartBukites

