Question 1

a. Given that
Ø = 2x2 yz3    determine ∇.∇∅

b. Find the first four terms of the Maclaurin’s series expansion  for f(x) = sin2x

Solution

a) Solving divergence of a gradient we integrate the expression twice

∇∅ = (∂2x2 yz3)/∂x I + (∂2x2 yz3)/∂y j + (∂2x2 yz3)/∂z k
=4xyz3 i + 2x2 z3 j + 6x2 yz2 k.

∇.∇∅ = (∂4xyz3)/∂x I + (∂2x2 z3)/∂y j + (∂6x2 yz2)/∂z                           =4yz3 + 12x2yz
Note; the divergence of a gradient is always a Scalar Quantity

b. Firstly you have to find from 1st – 7th of f(x) and equate it to zero(0):
f(x)= sin 2x           f(0)= sin 2(0)= 0
fi(x)= 2 cos2x        fi(0)= 2 cos2(0)= 2
fii(x)= -4 sin2x       fii(0)= -4 sin2(0)=0
fiii(x)= -8 cos2x      fiii(0)= -8 cos2(0)=-8
fiv(x)= 16 sin2x      fiv(0)= 16 sin2(0)=0
fv(x)= 32 cos2x      fv(0)= 32 cos2(0)=32
fvi(x)= -64 sin2x     fvi(0)= -64 sin2(0)=0
fvii(x)= -128 cos2x  fvii(0)= -128 cos2(0)=-128

f(x)=f(0)+xf’ (0)+x2/2! f” (0)+x3/3! f”’ (0)+

x4/4! fiv (0) + x5/5! fv (0) + x6/6! fvi  (0)+ x7/7! fvii (0)

f(x)=0 + 2x+x2/2! (0)+x3/3! (-8) + x4/4! (0)+ x5/5! (32)+ x6/6! (0)+ x7/7! (-128)
Using the Maclaurin’s series Equation you’ll arive at;
f(x)=2x – [(8x3)/(1×2×3)] + [(32x5)/(1×2×3×4×5)] – (128x7)/(1×2×3×4×5×6×7)

f(x)=2x – (4x2)/3 + (4x5)/15 – (8x7)/315

Question 2

a. Verify the convergence or otherwise of the given GP
2 + 6 +18 + 54 +…..
b. Given that A = 3y2zi -2x2yj- xyz2k   find the curl of A at (1,-2,1)

Solution

a. Applying the formular of GP

Sn=(a(1 – rn))/(1-r)    r<1    Sn=(a(1 – rn))/(r – 1)   r>1
Sn=(2(1-3n))/(3-1) = (2(1-3n))/2= (1-3n)
Sn=(1-3n )       n→∞
Sn=1 – 3=1- ∞ = -∞
The series is a divergence series. As n tends to infinity 3n will become a very large number making the series Divergence


b.
Note The curl of a function is always a vector quantity

= -xz2i +(3y2 +xz2)j + (-4xy -6yz)k
at A(1,-2,1)
= -(1)(1)2i + (3(-2)2 + 1(1)2)j + (-4(1)(2) -6(-2)(1))
The curl of A = -i +13j +k

Question 3

Evaluate
sA ̅.n ̅ds,    where A ̅=18zi-12j+3yk 

S is the part of the plane 2x + 3y + 6z =12 Given that the projected surface S of A is in the plane xy and the projection points to z-axis direction

Solution

The formula for surface integral :

∬A.n ̅ds         A=18zi-12j+3yk
S : 2x+3yz+6z=12    x-  y plane  z-axis direction
∬A ̅  n ̂ds     n ̂=∇f/|∇f|     ds=dxdy/|n.k|
∬F n ̂ dxdy/|n.k|

f=2x+3y+6z-12
∇f=∇(2x+3y+6z-12)=2i+3j+6k
|∇f|=√(22+32 +62 ) =√49 =7
Therefore we have;
n ̂=∇f/|∇f| = (2i+3j+6k)/7    

n.k=1/7(2i+3j+6k)
n.k = 1/7×6 = 6/7
A.n ̂ = (18zi-12j+3yk) . (1/7 (2i+3j+6k))
=(36z-36+18y)/7

From the equation of the surface (z axis direction)
z=(12-2x-3y)/6

Substituting z in the above equation becomes;
A.n ̂=1/7 (36(12-2x-3y)/6  – 36 + 18)
=1/7 (72 – 12x – 18y – 36 + 18y)
=1/7 (36-12x)
∬Fn ̅ds =∬1/7 (36-12x)  dxdy/6 ×7   remember n.k=7/6
∬6(6-12x)  dxdy/6
∬(6-12x)dxdy

To find the limit of the integration, take the x-y plane at which z=0 so that you can have:  2x+3y =12
From the equation at x=0   y=4
From the equation at y=0   x=6
X varies from x=0  to x=6
Y varies from  y=0 t0 y = (12-2x)/3

060((12-2x)/3) (6-2x)dxdy
06(6-2x)dx     (y)  ((12-2x)/2) ¦ 0
06(6-2x)dx ((12-2x)/2)
06(24-12x+4/3 x2 )dx=24

 Question 4

a. Given that w = z2  + 4  determine   dw/dz at the point (2,3).
b. given that z1=1 + j2,    z2 = 4 – j3,   z3 = -2 +j3  and   z4 =  -5 -j      find.
i. z1 + z2 – z3 in polar form
ii. z1 z2 z3in exponential form
iii.   (z1 + z3) /(z2 +z4) in cartesian form

Solution

a.
z = x+ iy
z2 = (x+iy)2 = x2+ 2xyi – y2
w = x2+ 2xyi – y2 +4
w = x2– y2 +4+ 2xyi
w= u +iv
u = x2– y2 +4     v = 2xy
Differentiating u and v with respect to both x and y;

∂u/∂x=2x         ∂u/∂y=-2y.
∂v/∂x=2y         ∂v/∂y=2x
∂w/∂z = ∂u/∂x + j∂v/∂x  = ∂v/∂y –j ∂u/∂y
=2x+j2y = 2x – j(-2y)= 2x + j2y

Thus w = 2x + j2y

b.
z1=1 + j2,    z2 = 4 – j3,   z3 = -2 +j3  and   z4 =  -5 -j  

i. in polar (r, θ)
z1 +z2 +z3 = (1 + j2) + (4 – j3) – ( -2 +j3 )
=(1+4+2) +j(2-3-3)
=7 –j4

r=√(72+42 )=√65
θ=tan-1(-4/7)= -29.7 ≈-30o
-4 and 7 is on the 4th quadrant
θ=360 – 30=330o

     (√65  , 330o)

ii. in exponentail Z = re
z1 z2 z3= (1+j2)(4-j4)(-2+j3)
=(4-j3+8j+6) (-2+j3)
=(4+j5+6) (-2+j3)
=(10+j5) (-2+j3)
=-20 +j30-j10-15
=-35 +j20

r=√((-35)2+(20)2 )=√1625 = 40.3

θ=tan-1(20/-35)= -29.7≈ 30o
θ=180 – 30= 150o
z=40ej150
Z = 40ej150
Thus  z1 z2 z3 in exponetial form is equal= 40e
j150


iii.
(z1+z2)/(z2-z4 ) = [(1+j2)+(-2+j3)]/[(4-j3)—(-5-j) ]=[(-1+j5))/((9-j2) ]
Multiplying by the conjugate of  (9-j2)
=[(-1+j5)/(9-j2) ] × [(9+j2)/(9+j2)]
= (-9-j2+j40-10)/(92+4)
=(9+j30-10)/(81+4) = (-1+j30)/85=-1/85 + j 30/85

=(-1/85 + j 30/85)

Question 6

a. using  De’alambert ratio test prove on the convergence or  otherwise of the series below

1 + 1/3 + 1/9 + 1/27 + 1/81 + …….

b. find (1+i)8 using Demoiver’s theorem

Solution

a.

D’alembert ratio test

k=U(n+1) /Un
k<1 convergent
k>1 divergent

1/3o +1/31 +1/32 +1/33 +1/34

Therefore Un=1/3n             U(n+1) =1/3(n+1)
Applying the D’Alembert formula
K=1/3(n+1) ÷1/3n
=1/3(n+1)  × 3n/1= 3n/3(n+1)

Applying law of indices
=3(n-(n+1)) = 3(-1)
k=1/3    the series is convergent since k<1

b.

Applying Demoiver’s Theorem:

(1+i)8     a=1   b=1  n = 8
Zn=rn (cosnθ + sinnθ )
r=√(a2+b2 )   = √(12+12 )=√2
θ=tan-1(1/1) =45° = π/4\
Z = (√2)(cosn(π/4)+sinn(π/4))

Substituting the value of n = 8
Z8 = (√2 )8 (cos8(π/4)+sin8(π/4))
Z8=16(cos2π + sin2π )
cos2π = -1    and  sin2π = 0
Z8 = 16( -1 + 0 ) =-16
Therefor:  Z8 = -16

Question 7

Find the Fourier expansion  to represent

f(x)= π – x  for 0<x<2π

Solution

Using the formula of Fourier Series
Finding the value of ao
Now finding the value of anApplying integration by part;
Apply integration by part;

Question8

a. Evaluate the following if
Z1 = 1 – j3,  Z2 = -2 + j5  and  Z3 = -3 –j4
i) Z1Z2 in (a + jb)
ii) form Z1/Z3 in polar form
iii) Z1Z2/ (Z1 +Z2)

b) Find Z1Z2Z3

Solution

a)
i)  Z1Z2  = (1-j3) (-2 + j5)
= -2 +j5 +j6  -j215
=-2 +j5 +j6 + 15
     Z1Z2 = 13 +j11

ii) Z1/Z3 = (1-j3)/(-3-j4)
Multiplying through by the conjugate of ( -3 + j4)
= (1-j3)/(-3-j4)  ×  (-3+j4)/(-3+j4)
= (-3+ j4+j9-j212)/(32+42 )
=9/25 + j13/25
=0.36 + j 0.52

Polar form (r,θ)  r=√(x2+y2)    θ = tan-1(y/x)
r=√(0.362+ 0.522 )   = √0.4 = 0.6
θ=tan-1(0.52/0.36) = 60°
Z1/Z3 = (0.6, 60°)

ii) Z1 + Z2 = (1-j3) + (-2+j5)
= (1-2) + j(-3 +5)
= -1 +2j
Z1 + Z2 = -1 +2j       Z1Z2 =13 + j11

(Z1 Z2)/(Z1+Z2 ) = (13 + j11)/(-1+2)  ×  (-1-2)/(-1-2)
(-13-j26-j11-j2 22)/(-12+22)
=(9-j37)/5 = 9/5 –  j 37/5
= 1.8 – j7.4

Z = (x + jy)   ( Complex form)
Z = ( r, θ)     ( Polar form)
Z = re-jθ       (Exponential form)

r=√((1.8)2+(7.4)2 )   =√25.33 = 5.03
θ=tan-1(7.4/1.8) = 76.3°
Z=5e-j76.33

Question 9

a.   A = 3x2y – 2xyzj + yxk  Find
∇× A̅   at (1,-1,1)

b. Verify the convergence or otherwise of the GP      below
1+ 1/3 +1/9 + 1/27 +1/81 +⋯

Solution

a)  Finding the Curl of the vector

= ( z – 2xy)i + (0 – 0)j + (2yz -3x2)z
= ( z – 2xy)i + (2yz -3x2)z
At (1, -1, 1)
=(1 -2(1)(-1))i + (2(-1) (1) – 3 (1)2)z
=(1+2)i + (-2-3)z
=3i – 5z

b)  a=1,   r = 1/3÷1 = 1/3×1 = 1/3

Sn = (a(1 – rn))/(1-r)
Sn = 1(1-(1/3)n ) / (1- 1/3)
Sn=((1- (1/3)n )) / (2/3)
Sn = (1- (1/3)n ) ÷  2/3
Sn= (1 – (1/3)n ) × 3/2
as  n→∞       (1/3)n= 0
Sn=(1-0) x 3/2 = 2/3
Sn=3/2      Therefore it is Convergence

Question 10

a) Expand  f(x) = e7x using Maclaurin’s series expansion
b) Find    ∇∅= 1/|r|    where  r = xi + yj + zk

Solution

a)

f(x)= e7x            f(0)= e0=1
fi(x)= 7e7x         fi(0)= 7e0=7
fii(x)= 47e7x      fii(0)= 47e0=47
fiii(x)= 343e7x    fiii(0)= 343e0=343
fiv(x)= 2401e7x  fiv(0)= 2401e0=2401
fv(x)= 16807e7x fv(0)= 16807e0=16807

f(x)=f(0) + xf’’ (0) + x2/2! f’’(0) + x3/3! f’’’(0)+
f(x)=1 + (x × 7) + (x2/2!  × 49) + (x3/3! × 343) + (x4/4!  × 2401) + (x5/5!  × 16807)
f(x)=1 + 7x + (49x2)/2 + (343x3 )/6 +(2401x4)/24 + (16807x5)/120

b)

r ̅= xi + yj + zk
|r ̅ |=√((xi)2+(yj)2+(zk)2 ) = √(x2 + y2+z2 )
|r ̅ |=(x2+y2+z2 )1/2

∅=1/| ̅r| =1/(x2+y2+z2 )1/2 =(x2+y2+z2 )-1/2

∇∅ = (d(x2+y2+z2 )-1/2/dx) i  + (d(x2+y2+z2 )-1/2/dy) j + (d(x2+y2+z2 )-1/2/dz) k ……(i)

Now to find   (d(x2+y2+z2 )-1/2/dx)
let s =(x2+y2+z2 )-1/2  and  u =  x2+y2+z2
du/dx = 2x     du/dy = 2y      du/dz = 2z
s = u-1/2
ds/du=-1/2 u-3/2
ds/dx = ds/du × du/dx  = -1/2 u-3/2  × 2x  = -x u-3/2

Therefore (d(x2+y2+z2 )-1/2/dx) = ds/du × du/dx
= -x u-3/2
Inserting the value of u = x2+y2+z2
(d(x2+y2+z2 )-1/2/dx)  = -x (x2+y2+z2 ) -3/2 …………………….(ii)

Applying the same approach to (d(x2+y2+z2 )-1/2/dy)
ds/dy = ds/du × du/dy  = -1/2 u-3/2  × 2y  = -y u-3/2
Thus (d(x2+y2+z2 )-1/2/dy)  = -y (x2+y2+z2 ) -3/2  …………..(iii)

Also (d(x2+y2+z2 )-1/2/dz) = -1/2 u-3/2  × 2z  = -z u-3/2
(d(x2+y2+z2 )-1/2/dz)  = -z (x2+y2+z2 ) -3/2 …………………….(iv)

Inserting equation (i), (ii), (iii) and (iv)  in equation (i)
∇∅= -x (x2+y2+z2 ) -3/2 i -y (x2+y2+z2 ) -3/2 j -z (x2+y2+z2 ) -3/2  k
∇∅= – (x2+y2+z2 ) -3/2 (xi + yj+ z)

Question 11

a) Expand  f(x) = In(x-2)  as a series of ascending power of x

b) If  F =6xyi + y2  Evaluate  c Fdr    for C at (0,0)  to (1,2)
Where C is the curve in the xy plane define by y = 2x

Solution

a) f(x)=f(0) + xf’’ (0) + x2/2! f’’(0) + x3/3! f’’’(0)+

f(x)=In(x-2)           f(0)=In(-2)
f’(x)=1/(x-2)          f’(0)=-1/2
f’’(x)=(-1)/(x-2)2    f’’(0)=-1/4
f’’’(x) = 2/ (x-2)3    f’’’(0)=-1/4
fiv (x)= -6/(x-2)4     fiv (0)=-3/8
fv (x)=24/(x-2)5      fv (0)=-3/4

b)

w= ∫c Fdr          r ̅ = xi+yj      dr  ̅ =dxi + dyj
∫(6xyi+y2 j)(dxi + dyj)…….(i)

y=2x      dy/dx=2     dy=2dx
Inserting the value of y and dy in equation (i)
∫(6x(2x)dx + (2x)2 . 2dx)
∫(12x2 dx + 8x2 dx)
∫20x2 dx

C at (0,0)  to (1,2)  Using the limit of x 0 to 1
0120x2 dx
=(-20x3/3) limit of 0 to 1
=(20(1)3)/3)=20/3
w= =20/3

Question 12

a)  Give the w = (3z – j)2 determine  dw/dz  at the point  (2,3)
b) Does the series 2/3 + ¾ + 4/5 +5/6 + ….. converge or diverge

Solution

a)
dw/dz    = du/dx + j dv/dx    =  dv/dy- j du/dy
du/dx + j dv/dx    =  dv/dy- j du/dy
Thus du/dx = dv/dy   and dv/dy  = -du/dy

W= (3z – j)2 = (3z – j) (3z – j)
W = 9z2 –j 3z –j3z + j2
W = 9z2 –j6z -1……. (i)

Recall z = x+ jy
Z2= (x + jy)(x+ jy) = x2 + j2xy – y2
Substituting the value of z and z2  in eqn (i)

W = 9(x2 + j2xy – y2) – j6(x + jy) – 1
W = 9x2 + j18xy –9 y2 – j6x + 6y -1
W = (9x2 –9 y2 + 6y -1) + j(18xy– 6x)

Note that W = u + jv  Therefore;
u = 9x2 –9 y2 + 6y -1    and v = 18xy – 6x

du/dx = 18x             du/dy = -18y + 6
dv/dx = 18y – 6       dv/dy = 18x
Using the formula   du/dx + j dv/dx = dv/dy – j du/dy   
= 18x + j(18y – 6) =18x – j(-18y + 6)
= 18x +j(18y -6) = 18x + j(18y -6)
dw/dz = 18x + j(18y -6)

dw/dz at (2, 3)
dw/dz = 18(2) + j(18(3) – 6)
dw/dz = 36 +j48

b) Finding the equation of the series 2/3 + ¾ + 4/5 +5/6 + …..
 we get: Sn=(n+1)/(n+2)
limn→∞    Sn=(∞+1)/(∞+2) = ∞/∞
Sn=undetermined
The series is divergence

Question 13

Find the Fourier series for the function shown. consider one cycle between x = -π and πbetween x = -pi and pi

Solution

considering different integers for the value of n

If n is even

If n is odd but having the value of 1, 5, 9…..

If n is odd but having the value of 3, 7, 11…..

Disclaimer

This entire solution may not be 100% accurate, any mistake or typo found should be reported to SmartBukites Management through the following email [email protected] »
All the custom solutions  are written for individual research and reference ONLY. SmartBukites does not promote plagiarism in any form and firmly believes that Student will use the solutions models in their individual efforts.

Do you have a Question to Ask?

SmartBukites have a Facebook Group which allows everyone to ask, answer and seek academic help. At SmartBukites, we believe Smart approach to Education will go along way in easing human academic struggle.

Click the link to join now!!! https://web.facebook.com/groups/675122219621351