The distance between a point A(12,0) and B(0, -5) is found to be ………

a) 15    b) 18   c) 13   d) 25

AB = √((x2 – X1)2 + (y2- y1)2)
=√((0 -12)2 + (-5 -0))2
=√(144 + 25)
= √169 = 13 unit C

Find the direction of the vector V = 2i – 5j
a) 262o  b) 272o  c) 282o  d) 292o

tanθ = (y/x)
tanθ = (-5/2)
θ = tan-1 (-5/2)
θ = -68.198

Since 2, -5 falls in the fourth quadrant:
θ = 360 – 68.198 = 292o    D

A line which intercepts the y – axis at a point 1 and having a gradient of ¾ will have the following equation.

a) 3x – 4y = 4    b) 4x + 3y + 4 = 0   c) 3x – 4y = -4   d) 4x – 3y -4 = 0

y = mx + c
c =1  and m = ¾
y = ¾ x + 1
y = (3x + 4)/4
4y = 3x + 4
3x -4y = -4      C

Find the equation of a straight line joining the point M(-3, -4) and N(8, 1)

a) 5x + 11y + 29 =0     b) 5x – 11y -29 = 0     c) 11x + 5y = 29    d) 11x – 5y = -29

(y – y1)/(y2 – y1) = (x – x1)/(x2 – x1)
(y – (-4))/(1 – (-4)) = (x – (-3))/(8 – (-3))
(y + 4)/(1 + 4) = (x + 3)/(8 + 3)

( y + 4)/5 = (x + 3)/11
11(y+4) = 5(x + 3)
11y + 44 = 5x + 15
5x  – 11y – 44 + 15 = 0
5x – 11y – 29 = 0    B

Write the equation of a straight line passing through the point (2, 2) and is parallel to the line 3x – 2y + 5 = 0

a)2y + 5x + 2 = 0    b) 3y – 2x = 2     c) 2y – 3x + 2 = 0     d) 3y + 2x -2 = 0

3x – 2y + 5 = 0
2y = 3x + 5
y =(3x + 5 )/2
y = 3x/2 + 5/2

Comparing with the formula Y = mx + c
m = 3/2   and   c = 5/2

The slope of parallel line are equal to each other. Hence;
m1 = m2 = m = 3/2

Y – y1 = m (x – x1)
y – 2 = 3/2(x – 2)
2y – 4 = 3(x – 2)
2y – 4 = 3x – 6
2y -3x -4 + 6 = 0
2y -3x + 2 = 0     C

Solve V1 x V2 is V1 = -4i + 3j and V2 = i – 2j + 3k

Taking the cross product, we arrived at:

= i((3×3) –(1x – 2)) – j((-4 x 3) – (-1 x 1)) + k((-4 x 2) – (1 x 3))
=i( 9 + 2) –j(-12 -1) + k (8 – 3)
= i11 + 13j + 5k

Find the point of interception between the following line 4x – 9y + 9 = 0 and x + 14y – 79 = 0

a) (7, 3)     b) (4, 2)      c) ( 12, 5)      d) (9, 5)

4x – 9y + 9 = 0     x 1
x + 14y – 79 = 0   x 4

4x – 9y + 9 = 0    
4x + 56y -316 = 0

Subtracting the equation we arrive at
-65y + 325 = 0
65y = 325
y = 325/65
y = 5

Substituting the value of y in the equation above
4x – 9y + 9 = 0    
4x – 9(5) + 9 = 0    
4x – 45 + 9 = 0
4x = 36
x = 36/4 = 9

Hence (x, y) = (9, 5)  D

Derive the equation of a circle whose center is at the origin and have a diameter of 10

a) x2 – y2 = 5    b) x2 + y2 = 25     c) 2x + 2y = 25    d) 2x – 2y = 5

d = 10   c(0, 0)
r = d/2 = 10/2 = 5
Using the equation of a circle: (x – α)2 + (y – β)2 = r2
(x – 0)2 + (y – 0)2 = 52
x2 + y2 = 25   B

Analyze the equation x2 + y2 -8x – 2y + 12 = 0 (Hint: Find the center and radius)

a) (5, 6) 6      b) (8, 4) 5      c) (4, 1) √2      d)(2, 2) 9

x2 + y2 -8x – 2y + 12 = 0
Using the equation of a circle x2 + y2 + 2gx + 2fy + c = 0. By comparison:
-8x = 2gx
g = -4

-2y = 2fy
f = -1

C = 12
C = g2 + f2 – r2
r2 = g2 + f2 – C
r2 = (-4)2 + (-1)2 -12
r2 = 16 + 1 -12
r2 = 5
r = √5

The center (a, b) = (-g, -f) = (-(-4), -(-1)) = (4, 1)
r = = √5
Hence: (4, 1) √5          C

Find (V1 x V2) . V V1 = 4i -8j + k,   V2 = 2i +j – 2k,   V3 = 3i – 4j + 12k

a) 235       b) 240      c)245     d) 250

Taking the cross product of V1 x V2 we have:
V1 x V2 = i(16 – 1) –j(-8 -2) + k(21 + 16) = 15i + j10 + 20k

Now taking the dot product (V1 x V2) . V 
= (15i + j10 + 20k) . (3i -4j + 12k)
=(45 – 40 + 240) = 245       C

Find the equation of a circle whose center is at (-3, 5/2) and having a radius of 3/2

a) x2 – y2 + 3x – 6y = 13                 b) x2 + y2 + 5x + 6y = -13
c) x2 – y2 -3x + 6y = 13                   d) x2 + y2 + 6x -5y = 13

C (-3, 5/2)  and r 3/2
Using the equation of a circle x2 + y2 + 2gx + 2fy + c = 0
a = -g  -g = -3
g = 3
b = -f   -f = 5/2
f = -5/2
C = g2 + f2 – r2  = 32 + (-5/2)2  – (3/2)2
C = 9 + 25/4 – 9/4 = 52/4 = 13

Now inserting the value of g, f and c in the general equation:
x2 + y2 + 2gx + 2fy + c = 0
x2 + y2 + 2(3)x + 2(-5/2)y + 13 = 0
x2 + y2 + 6x -5y + 13 = 0      C

Find the focus and directrix of the following parabola x2 = 28y

a) (9, 4) x=9      b)(7, 0), x= 7     c) (28, 14), x= 28     d) (14, 0), x=14

x2 = 28y
Comparing this to the general equation of parabola x2 = 4ay
4a = 28
a = 28/4 =7

Hence F(7, 0) x=7    B

Derive the equation of an ellipse whose focus is at F(5, 0) and having major axis which is a=8.

a) x2/100 + y2/36 = 1      b) x2/100 – y2/36 = 1    c) x2/64 + y2/36 = 1    d) x2/64 – y2/36 = 1

F(5, 0) and major axis a = 8
x = ae =5
e = 5/a = 5/8

b2 = a2 (1 – e2)
b2 = 82 –( 1- (5/8)2)
b2 = 64(1 – 25/64)
b2 = 39

Using the equation of parabola at origin x2/a2 + y2/b2 = 1   
x2/82 + y2/39 = 1
x2/64 + y2/39 = 1           C

A hyperbolic equation is given as  x2/16 – y2/49 = 1. Its transvers and coordinate systems are:

a) 4 & 49      b) 16 & 49       c) 16 & 7    d) 8 & 14

x2/16 – y2/49 = 1
length of transvers = 2a
length of conjugate axis = 2b

√a = √16 = 4
√b = √49 = 7

L.T = 2a = 2 x 4 = 8
L.C = 2b = 2 x 7 = 14

Analyse the following parabola y2 – 4y + 12x + 16 = 0

a) V(-4, 12), F(-4, 8)     b) V(2, 1), F(8, 1)     c) V(-1, 2), F(-4, 2)    d) V(6, 3), F(6, 6)

y2 – 4y + 12x + 16 = 0
Solving parabola y2 – 4y  using complex square
y2 – 4y  = (y -2)2 -4
(y -2)2 -4 + 12x + 16 = 0
(y -2)2 -4 = -12x – 16
(y -2)2  = -12x – 16 + 4
(y -2)2  = -12x – 12
(y -2)2  = -12(x + 1)

by comparing with the formula (y -k)2  = 4a(x – h)
4a = -12    a = -3
-k = -2   k = 2
-h = 1    h = -1
(h, K) = (-1, 2) = Vertex
Focus = F(a+h, k) = (-3 -1, 2) = F(-4, 2)    C

Find the slope of the line joining (-9, -6) and (0, 2)

a) 9/5   b) -3   c) -8/9    d) 3/2

Slope = (y2 – y1)/ (X2 – X1)
= (2 – -6)/0 – -9) = 2+6/ 0 + 9
=8/9     C

Find the angle made by the vector V = 2i + 4j with the axis

a) 63o      b) 64o     c)  none     d) 65o

tanθ = y/x = 4/2
θ= tan-1 (4/2)
θ = 63o    A          

Find the angle made by the vector V = 2i + 4j with the axis

a) 63o      b) 64o     c)  none     d) 65o

tanθ = y/x = 4/2
θ= tan-1 (4/2)
θ = 63o    A          

  • 1a) Find the centre, vertices, foci, eccentricity and asymptotes of the hyperbola with equation
    9x2 – 4y2 – 18x + 32y -91 = 0
  • 1b. The parametric equations of a circle are x = 5cost and y=5sint. Find its Cartesian equation
  • 1c.Write an equation of the circle shown in the figure below.

  • a)
    9𝑥2−4𝑦2−18𝑥+32𝑦−91=0
    (9𝑥2−18𝑥)−(4𝑦2−32𝑦)−91=0
    9(𝑥2−2𝑥)−4(𝑦2−8𝑦)−91=0

    Adding square of the half coefficient of x and y
    𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥=(2/2)2=1
    𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑦=(8/2)2=16
    9(𝑥2−2𝑥+1−1)−4(𝑦2−8𝑦+16−16)−91=0
    9(𝑥2−2𝑥+1)−9−4(𝑦2−8𝑦+16)+64−91=0
    9(𝑥2−𝑥−𝑥+1)−4(𝑦2−4𝑦−4𝑦+16)−9+64−91=0
    9(𝑥(𝑥−1)−1(𝑥−1))−4(𝑦(𝑦−4)−4(𝑦−4))−36=0
    9(𝑥−1)2−4(𝑦−4)2=36
    9/36(𝑥−1)2 − 4/36(𝑦−4)2=36/36 
    1/4(𝑥−1)2−1/9(𝑦−4)2=1
    (𝑥−ℎ)2 /𝑎2 − (𝑦−𝑘)2 /𝑏2=1

    𝐶𝑒𝑛𝑡𝑒𝑟 (ℎ,𝑘)=(1,4)    𝑎2=4 𝑎=2        𝑏2=9 𝑏=3
    𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (ℎ±𝑎, 𝑘)=(1±2, 4)

    𝑐2=𝑎2+𝑏2         𝑐=√(4+9)= 𝑐=√13
    𝐹𝑜𝑐𝑖𝑠(ℎ±𝑐, 0)= (1±√13, 0)
    𝑒=[√(𝑎2+𝑏2) ]/ 𝑎
    e=[√(4+9)]/2=√13/2
    𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑠 𝑦 = ±(𝑏/𝑎)(𝑥−ℎ)+𝑘  = ±(3/2)(𝑥−1) + 4
  • b)
    𝑥=5cos𝑡 𝑦=5sin𝑡
    sin2𝜃+cos2𝜃=1
    𝑥2=25cos2𝑡           cos2𝑡=𝑥2 /25 ………….(𝑖)
    𝑦2=25sin2𝑡            sin2𝑡=𝑦2/25 ………….(𝑖𝑖)
    sin2𝑡+cos2𝑡=1…….(𝑖𝑖𝑖)

    Sub eqn (i) and (ii) in (iii) 
    𝑦2 /25+𝑥2 /25=1
    𝑦2+𝑥2=25
  • c) The centre of the circle is at (−2,2)
    The radius is 3
    (𝑥−ℎ)2+(𝑦−𝑘)2=𝑟2
    (𝑥+2)2+(𝑦−2)2=32
    (𝑥+2)2+(𝑦−2)2=9

     

  • a)  If 𝑢̅=(2𝑡2𝑖+3𝑗) 𝑎𝑛𝑑 𝑣̅=(𝑡3𝑖+7𝑡𝑗) verify the result
    • 𝑑/𝑑𝑡(𝑢̅.𝑣̅)=𝑢̅.𝑑𝑣̅/𝑑𝑡+𝑑𝑢̅/𝑑𝑡.𝑣̅
    • 𝑑/𝑑𝑡(𝑢̅ × 𝑣̅)= 𝑢̅ × 𝑑𝑣̅/𝑑𝑡+𝑑𝑢̅/𝑑𝑡×𝑣̅
  • b) Find the coordinates of the centre, vertices and foci of the ellipse
    25x2 + y2 = 25

tanθ = y/x = 4/2
θ= tan-1 (4/2)
θ = 63o    A  

  • a)
    i)  𝑑𝑣̅/𝑑𝑡=3𝑡2𝑖+7𝑗        𝑑𝑢̅/𝑑𝑡=4𝑡𝑗
    𝑢̅.𝑣̅ = (2𝑡2𝑖+3𝑗).(𝑡3𝑖+7𝑡𝑗) = 2𝑡5+21𝑡
            𝑑/𝑑𝑡(𝑢̅.𝑣̅) =10𝑡4+21
    𝑢̅.𝑑𝑣̅  / 𝑑𝑡= (2𝑡2𝑖+3𝑗).(3𝑡2𝑖+7𝑗)=  6𝑡4+21
    𝑑𝑢̅/𝑑𝑡 . 𝑣̅ = (4𝑡𝑗).(𝑡3𝑖+7𝑡𝑗)=4𝑡4
    𝑢̅.𝑑𝑣̅/𝑑𝑡+𝑑𝑢̅/𝑑𝑡.𝑣̅ =  6𝑡4+21+4𝑡4 = 10𝑡4+21
           𝑇ℎ𝑢𝑠 𝑑/𝑑𝑡(𝑢̅.𝑣̅) = 𝑢̅.𝑑𝑣̅/𝑑𝑡+𝑑𝑢̅/𝑑𝑡.𝑣
  • ii)      𝑑𝑣̅ /𝑑𝑡 = 3𝑡2𝑖 + 7𝑗     𝑑𝑢̅ /𝑑𝑡 = 4𝑡𝑗
                     i        j       k
    𝑢̅ × 𝑣̅ =     2t2    3      0           
                      t    7t    0
    = 𝑜𝑖 + 0𝑗 + (14𝑡3 − 3𝑡3)𝑘 = 11𝑡3𝑘 
                          𝑑 /𝑑𝑡 (𝑢̅ × 𝑣̅)  = 33𝑡2𝑘
                            i        j       k
    𝑢̅ × 𝑑𝑣̅ /𝑑𝑡 =  2t2     3      0    
                            t     7    0
    = 0𝑖 + 0𝑗 + (14𝑡2 − 9𝑡2)𝑘 = 5𝑡2𝑘
                            i        j       k
    𝑑𝑢̅ /𝑑𝑡 × 𝑣̅=   2t2      0      0    
                            t     7     0  
    = 0𝑖 + 0𝑗 + 28𝑡2𝑘 = 28𝑡2𝑘
    𝑢̅ × 𝑑𝑣̅ /𝑑𝑡 + 𝑑𝑢̅ /𝑑𝑡 × 𝑣̅ = 5𝑡2𝑘 + 28𝑡2𝑘 = 33𝑡2𝑘
                      𝑇ℎ𝑢𝑠 𝑑/ 𝑑𝑡 (𝑢̅ × 𝑣̅) = 𝑢̅ × 𝑑𝑣̅ /𝑑𝑡 + 𝑑𝑢̅ /𝑑𝑡 × 𝑣̅
  • b)  25𝑥2 + 𝑦2 = 25
    Divide the equation by 25
    25𝑥2 /25 + 𝑦2 /25 = 25 /25
    𝑥2 /1 + 𝑦2 /25 = 1
    𝑥2/ 𝑏2 + 𝑦2/ 𝑎2 = 1
    𝑎 > 𝑏    𝑐2 = 𝑎2 − 𝑏2                 𝑎2 = 25   𝑎 = 5
                                              𝑏2 = 1      𝑏 = 1
     𝑐 = √(𝑎2 − 𝑏2) = √(25 – 1) = √24
     = √(4 × 6) = 2√6
    𝐶𝑒𝑛𝑡𝑒𝑟 𝑎𝑡 𝑜𝑟𝑖𝑔𝑖𝑛 (0,0)
    𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (0, ±𝑎) = (0, ±5)
    𝐹0𝑐𝑖 (0, ±𝑐) = (0, ±2√6)

        

  • a) Let a and be two-dimensional vector is the following result true?

                Where x denotes the vector product

  • b) Find the equation of the hyperbola with vertices at (0,+-6)  and e=5/3. Find the foci
  • c. What is the point of intersection of the lines with equation
    x=7 and y =-9?
  • b)
    𝑒=√(𝑎2+𝑏2 )  𝑎=√[(𝑎2+𝑏2 )/𝑎2 ]
     𝑦2 /𝑎2 − 𝑥2 /𝑏2=1   𝑣(0,±𝑎)
    𝑥2 /𝑎 2− 𝑦2 /𝑏2=1     𝑣(±𝑎,0)
     𝑎=6        𝑒=53

    5/3= √[(62+𝑏2 )/62]
     5/3= √[(36 + 𝑏2 )/36]
    25/9=(36+𝑏)/36
    900=324+9𝑏2
    9𝑏2=900−324
    𝑏2=64              𝑏 = √64 = 8
    𝑇ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑎 𝑦2 /62 − 𝑥2/82=1
    𝑦2/36 − 𝑥2/64=1     𝑐2=𝑎2+𝑏2      𝑐=√36+64        𝑐=√100=10
    𝐹𝑜𝑐𝑖(0,±𝑐) = (0,±10)
  • c)  𝑥 = 7 𝑎𝑛𝑑 𝑦 =−9
    𝑇ℎ𝑢𝑠 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (7, −9)

         

The equation of a circle is x2 + y2 – x – 3y = 0. The line y = x – 1 Intersect the circle at point P and Q

  • i) Find the coordinates of P and Q
  • ii) Sketch and show the points P and Q
  • iii) Determine the length of PQ
  • vi) Determine the coordinate of M, the mid-point of line PQ
  • v) If O is the centre of the circle, show that PQ is perpendicular to OM
  • vi) Determine the equation of the tangent to the circle at P and Q
  • vii) Find the point where the two tangent intersect
  • i) 𝑥2+𝑦2−𝑥−3𝑦=0………….(𝑖)
    𝑦=𝑥−1…………………………(𝑖𝑖)

    Substitute equation (ii) in (I)
    𝑥2+(𝑥−1)2−𝑥−3(𝑥−1)=0
     𝑥2+𝑥2−2𝑥+1−𝑥−3𝑥+3=0
     2𝑥2+−6𝑥+4=0
    𝑥2+−3𝑥+2=0
    𝑥2+−2𝑥−𝑥+2=0
    𝑥(𝑥−2)−1(𝑥−2)=0
    (𝑥−2)(𝑥−1)=0
    𝑥=2  𝑎𝑛𝑑   𝑥=1    
     𝑦=𝑥−1    𝑦=2−1=1              
    𝑦=1−1 =0
    𝑦=1 𝑎𝑛𝑑 𝑦=0

    The two points are 𝑃(1,0)    𝑄(2,1)
  • ii)
  • iii) Distance

    𝑑=√[(𝑥2−𝑥1)2+(𝑦2−𝑦1)2
    √[(2−1)2+(1−0)2]
    d=√1+1=√2= √2
  • iv) Mid-point M
    𝑀𝑦=(𝑦2+𝑦1)/2
     𝑀𝑥=(𝑥2+𝑥1)/2
    𝑀𝑦=(1+0)/2=1/2
    𝑀𝑥=(2+1)/2=3/2
                     𝑀(3/2, 1/2)
  • v)𝑃𝑄 𝑃𝑒𝑟𝑝𝑒𝑚𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑡𝑜 𝑂𝑀 𝑤ℎ𝑒𝑟𝑒 𝑂 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒
    𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑙𝑖𝑛𝑒𝑠=−1   𝑚1𝑚2=−1

    The centre of the circle from the equation 𝑂(1/2, 3/2)   
    𝑃(1, 0),  𝑄(2, 1),  𝑂(1/2,  3/2) 𝑎𝑛𝑑 𝑀(3/2, 1/2)
    𝑚𝑃𝑄 𝑚𝑂𝑀=−1

    𝑚𝑃𝑄=(𝑦2−𝑦1 )/(𝑥2−𝑥1 )
    𝑚𝑃𝑄=(1−0)/(2−1)=1
    𝑚𝑂𝑀=[(1/2−3/2)/ (3/2−1/2)]=−1
    𝑚𝑃𝑄 𝑚𝑂𝑀= 1×−1 =−1 𝑇ℎ𝑢𝑠 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟
  • vi) Equation of P and Q

    𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑂𝑃
    𝑂(1/2, 3/2) 𝑃(1,0)
    𝑚𝑂𝑝=(1−1/2)/ (0−3/2)=−3

    The Tangent is perpendicular to the radius
    𝑇ℎ𝑢𝑠 −3×𝑚𝑝=−1

    𝑚𝑝=1/3 𝑃(1,0)
    (𝑦−𝑦1)=𝑚(𝑥−𝑥1)
    𝑦−0=1/3(𝑥−1)
    𝑦=𝑥/3−1/3

    𝑂(1/2, 3/2) 𝑄(2,1)
    𝑚𝑂𝑄=(1−3/2)/ (2−1/2) =1/−3

    The Tangent is perpendicular to the radius
    𝑇ℎ𝑢𝑠 1−3×𝑚𝑄=−1

    𝑚𝑄=3   𝑄(2,1)
    (𝑦−𝑦1)=𝑚(𝑥−𝑥1)   
    𝑦−1=3(𝑥−2)         𝑦−1=3𝑥−6
    𝑦 = 3𝑥−5
  • vii) The point of intercept
    𝑦 = 𝑥/3 – 1/3………….(𝑖)
    𝑦 = 3𝑥 − 5……….(𝑖𝑖)
    𝑦=𝑦
    𝑥/3 – 1/3 = 3𝑥−5
    𝑥 – 1 = 9𝑥−15
    9𝑥 – 𝑥 = 15−1
    14=8𝑥
    𝑥=14/8  = 7/4
    The points of intercept are (7/4, 1/4)

         

  • a)  Find the equation of the circle passing through three points (1, 6) (2, 1) and (5, 2). Also, find the coordinates of its centre and the length of the radius
  • b)  Prove that the circle x2 + y2 – 16y + 32 = 0  and  x2 + y2  +18x + 2y + 32 = 0  touch externally
  • c)  Calculate the area of the parallelogram spanned by the vectors a and b where a = (1,3,-3) and b =(8,18,4)

tanθ = y/x = 4/2
θ= tan-1 (4/2)
θ = 63o    A          

  • a)
    (1, −6) (2, 1) 𝑎𝑛𝑑 (5, 2)
    𝑥2 + 𝑦2 + 2𝑔𝑥 + 2𝑓𝑦 + 𝑐=0
    𝐹𝑜𝑟 (1,−6)
    12 + (−6)2 + 2𝑔 + 2𝑓 × −6 + 𝑐 = 0
    1 + 36 + 2𝑔 − 12𝑓 + 𝑐 = 0

    2𝑔 − 12𝑓 + 𝑐 = −37 … … … . . (𝑖)
    𝐹𝑜𝑟 (2,1)
    22 + 12 + 2 × 2𝑔 + 2𝑓 + 𝑐 = 0

    5 + 1 + 2𝑔 + 2𝑓 + 𝑐 = 0
    2𝑔 + 2𝑓 + 𝑐 = −5 … … … … . . . (𝑖𝑖)

    𝐹𝑜𝑟 (5, 2)
    52 + 22 + 5 × 2𝑔 + 2 × 2𝑓 + 𝑐 = 0
    25 + 4 + 10𝑔 + 4𝑓 + 𝑐 = 0
    10𝑔 + 4𝑓 + 𝑐 = −29 … … … … . . . (𝑖𝑖𝑖)

    Subtracting eqn (i) from (ii)
    2𝑔 + 14𝑓 = 32 … … … . . (𝑖𝑣)

    Subtracting eqn (i) from (iii)
    8𝑔 + 16𝑓 = 8 … … … … (𝑣)
    𝑒𝑞𝑛(𝑖𝑣) 𝑑𝑖𝑣𝑖𝑑𝑒 𝑏𝑦 2      𝑔 + 7𝑓 = 16 … . . (𝑣𝑖)
    𝑒𝑞𝑛(𝑣) 𝑑𝑖𝑣𝑖𝑑𝑒 𝑏𝑦 8       𝑔 + 2𝑓 = 1 … . . (𝑣𝑖)

    Subtracting  g + 2f = 1  from  g + 7f = 16
    We arrive at 5f = 15
    f = 3

    𝑔 = 1 − 2𝑓  = 1 − 2(3) = −5
    𝑔 = −5

    𝐹𝑟𝑜𝑚 𝑒𝑞𝑛 (𝑖𝑖)
    4𝑔 + 2𝑓 + 𝑐 = 5
    𝑐 = −5 − 4𝑔 − 2𝑓 = −5 − 4(−5) − 2(3)
    𝑐 = −5 + 20 − 6 = 9

    𝑔 = −5    𝑓 = 3    𝑐 = 9

    𝑥2 + 𝑦2 + 2𝑔𝑥 + 2𝑓𝑦 + 𝑐 = 0
    𝑥2 + 𝑦2 + 2(−5)𝑥 + 2(3)𝑦 + 9 = 0
    𝑥2 + 𝑦2 − 10𝑥 + 6𝑦 + 9 = 0
    𝑇ℎ𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 (−𝑔, −𝑓) = (5, −3)
    𝑅𝑎𝑑𝑖𝑢𝑠 = √(𝑔2 + 𝑓2)− 𝑐 = √(25 + 9 – 9) = √25 = 5 𝑈𝑛𝑖𝑡𝑠
  • b) 𝑥2 + 𝑦2 − 16𝑦 + 32 = 0 and 𝑥2 + 𝑦2 − 18𝑥 + 2𝑦 + 32 = 0
    𝑥2 + 𝑦2 + 2𝑔𝑥 + 2𝑓𝑦 + 𝑐 = 0

    1𝑠𝑡 𝐶𝑖𝑟𝑐𝑙𝑒
    𝑥2 + 𝑦2 − 16𝑦 + 32 = 0
    𝑔 = 0   𝑓 = −8
    𝑇ℎ𝑒 𝑐𝑜𝑜𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 (−𝑔, −𝑓) = (0, 8)
    𝑟1 = √(02 + 82 – 32) = √(64 – 32) = √32 = 5.66

    2𝑛𝑑 𝐶𝑖𝑟𝑐𝑙𝑒
    𝑥2 + 𝑦2 − 18𝑥 + 2𝑦 + 32 = 0
    𝑔 = −9 𝑓 = 1
    𝑇ℎ𝑒 𝑐𝑜𝑜𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 (−𝑔, −𝑓) = (9, 1)
    𝑟2 = √((−9)2 + 12 – 32) == √50 = 7.071
    𝑑 = 𝑟1 + 𝑟2 = 5.66 = 7.071 = 12.731
    𝑑 = √{(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 }
    𝑑 = √[(9 − 0)2 + (−1 − 8)2] = √(92 + 92) = √162 = 12.727
    𝑆𝑖𝑛𝑐𝑒 𝑟1 + 𝑟2 = √{(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 } 𝑇ℎ𝑢𝑠, 𝑡ℎ𝑒𝑦 𝑡ℎ𝑜𝑢𝑐ℎ 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑙𝑦
  • c)

tanθ = y/x = 4/2
θ= tan-1 (4/2)
θ = 63o    A          

  • a)  A circle passes through point A(2,4) and B(-2,6)  and the center lies on the line  x+ 3y -8 = 0
  • b) A line is draw perpendicular to 4x – 3y + 1 = 0 through the point (1,3) and (1,3) 
  • a) The intersect of the chord AB bisector Z and the given line is the centre M of the circle and the bisector is normal through the mid-point

    My = (y2 + y1)/2 = (6+4)/2 = 10/2 =5
    Mx = (x2 + x1)/2 = (2-2)/2 = 0/2 =0

    M(0,5)
    The bisector is perpendicular to the line AB
    mABmZ = -1
    mAB = (6-4)/(-2-2) = 2/(-4) = -1/2
    mAB = -1/mZ =-1/(-1/2) = 2

    Equation of the bisector   (0,5)
    (y – y1 ) = m(x – x1)
    (y – 5) = 2(x-0)
    y = 2x + 5
    y – 2x = 5…….×3
    3y – 6x = 15……….(I)
    From the question equation of the line is  x + 3y – 8 = 0
    3y + x = 8…………..(ii)
    Subtracting equation (ii) from (I)
    We will arrive at
    -7x = 7     x = -1
    Substituting the value of x in  y -2x = 5
     y = 2(-1) + 5 = -2 + 5 = 3

    Z(-1, 3)
    The radius of the line is the distance between AZ or BZ
    r=d(BZ)=√((-1+2)2 + (3-6)2 ) = √(1+9) = √10

Formula of a circle (x-p)2 +(y-q)2 =r2
(x+1)2 + (y-3)2 = (√10)2 
(x+1)2 + (y-3)2 = 10

  • b) 4𝑥−3𝑦+1=0
    (1,3) and (6,𝑘)

    4𝑥+1=3𝑦      𝑦=4𝑥/3 + 13
    𝑦=𝑚𝑥+𝑐
    𝑚1=4/3
    𝑚1𝑚2=−1
    𝑚2=−1/(4/3) =−3/4
    𝑚2=(𝑦2−𝑦1 )/(𝑥2−𝑥1 )
    −3/4 = (𝑘−3)/(6−1)
    −3/4 = (𝑘−3)/5
    −15=4(𝑘−3)
    −15=4𝑘−12              4𝑘=−3
    𝑘=−3/4

tanθ = y/x = 4/2
θ= tan-1 (4/2)
θ = 63o    A          

  • a) Write an equation for the ellipse having one focus at (0,3) at a vertex (0,4) and it’s centre at (0,0) 
  • b) What is eccentricity and what are the ranges of values of eccentricity for circle, ellipse, parabola and hyperbola?
  • c) A particle is moving on the x-axis. At time t = 0   the particle is at the point where x = 5 The velocity of the particle at time t seconds (where t>= 0) is (6t2 – t2) ms-1  Find:
    • i) The value of t for which P is instantaneously
    • ii) The acceleration of the particle when t=2 and when t=4
    • iii) An expression for the displacement of the particle from O at time t second s
  • a) Ellipse
    𝐹𝑜𝑐𝑢𝑠(0,3)    𝑉𝑒𝑟𝑡𝑒𝑥(0,4)     𝐶𝑒𝑛𝑡𝑒𝑟(0,0)
    𝑦2/𝑎2 + 𝑥2/𝑏2=1  𝑣(0,±𝑎)
    𝑎=4   𝑐=3    𝑐2=𝑎2−𝑏2
    𝑏2=𝑎2−𝑐2=√(42−32)=√(16−9)=√7
    𝑦2/42 + 𝑥2/(√7)2=1
    𝑦2/16 + 𝑥2/7=1
  • b) Eccentricity: how much a conic section (a circle, ellipse, parabola or hyperbola) varies from being circular.
    • At e = 0 for Circle
    • At 0 < e < 1 for Ellipse
    • At e = 1 for Parabola
    • At e > 1 for hyperbola
    • At e = Infinity for a line
  • c) If the particle is at rest
    i) v(t) = 0
    v(t) = 6t – t2 = 0
    t(6 –t) = 0
    6 – t = 0 t = 6 sec

    ii) a(t) = dv/dt = d(6t – t2)/dt
    a(t) = 6 – 2t
    when t = 2   a(t) = 6 -2(2) = 6 – 4 = 2 m/s2

    iii) x(t) = ∫ v dt = ∫(6t – t2)dt
    x(t) = 3t2 – t3/3 + c
    when t=0 and x(t) = 6
    6=3(0) -0/3 + c
    c =6

    

If you like this tutorial, subscribe to our YouTube channel here

Do you have a Question to Ask?

SmartBukites have a Facebook Group which allows everyone to ask, answer and seek academic help. At SmartBukites, we believe Smart approach to Education will go along way in easing human academic struggle.

Click the link to join now!!! https://web.facebook.com/groups/675122219621351

Related Courses